

Busbar-Kanal Energieverteilungssysteme 630A...6300A

INHALT

▶▶ E-LINE CR

Einleitung	2-3
Planung Horizontale Verteilung	4
Planung Vertikale Verteilung	5
Technische Daten	6-9
Bestellcode System	10
Gerade Schienenkästen	11
Winkel	12-14
Standardkomponenten	15
Dehnungskästen	16
Endstück	17
Panel / Transformatormodule	18-21
Panelmodule	22
Transformatormodule	23
Zusätzliche Werkzeuge	24
Vertikale und horizontale Gießharzanwendungen	25
Aufhängerelemente	26-31
Zwischenlängenmessung	32
Horizontale Montage-Anwendung für Gießharz	33
Vertikale Montage-Anwendung für Gießharz	34
Cast Resin Ek Reçinesinin Hazırlanması	35
Vorbereitung des zusätzlichen Harzes aus Gießharz	36
Erklärung	37
Zertifizierungen	38
Allgemeine Produktmerkmale	39
Design-Formular	40

▶ Einleitung

ELINECR

Der Transport hoher Ströme (in den Transformator-Panel-Verbindungen, in den Spaltenleitungen, in der internen Energieverteilung der Fabriken) erfolgte durch Parallelschaltung vieler Kabel mit sehr dickem Querschnitt.

Für die Kabel wurden Kabelträger oder spezielle Unterflur-Kabelrinnen gebaut.

Die Verwendung einer Gussharzschiene anstelle von Kabeln, die in externen Umgebungen, Galerieübergängen, chemischen Anlagen, Hafenanwendungen und in Tunneln eingesetzt werden, ist eine Notwendigkeit.

Hohe IP-Isolation DUROCOMP-Verbundwerkstoff mit Hochtemperatur- und mechanischem

Betriebseigenschaften, dass aus speziell ausgewählten reinen Siliziummineralien und Epoxidharz besteht, schützt die E-LINE CR busbar vor äußeren Einflüssen.

Einfache Wärmeübertragung

Dank der hohen Wärmeübertragungsadditive, die in dem System verwendet werden, wird die in den Leitern erzeugte Wärme durch den Körper leicht an die Umgebung übertragen. (Abbildung 1)

Abbildung 1

Kurzschlussfestigkeit

Hohe mechanische und thermische Beständigkeit durch DUROCOMP-Material.

Sicherheits-Einzelschraubenkonstruktion

An zusätzlichen Punkten der E-Line CR busbarwerden Einschraubkonstruktionen verwendet. Die Belvil-Scheiben an jedem Ende des Bolzens* fixieren nicht nur denAnpressdruck in allen thermischen Bedingungen, sondern verhindern auch das Lösen des Bolzens.

* Die Schraube wird mit einem Drehmomentschlüssel mit 83 Nm (60 lbft) angezogen.

Vorteile des Gießharzsystems

- ► Entspricht den Normen 61439-6
- ► Schutzklasse IP 68 für den Außenbereich
- ► Korrosionsbeständig
- ▶ Beständig gegen Chemikalien
- ► Insektenresistent
- ► Kann in tropischen Umgebungen verwendet werden
- ► Hohe mechanische Festigkeit
- ▶ Schornsteinfrei
- ► Hohe Kurzschlussfestigkeit
- ▶ Beständig gegen Ausbreitung von Feuer
- ► Kann unter Feuer betrieben werden
- ► Kompatibel mit E-Line KX-Modulen

Widerstand gegen Feuer und Erdbeben

- ▶ IEC 60331-1 3 Stunden Stromdurchgang unter Feuer
- ▶ Erdbebenfestigkeit nach IEC 60068-3-3 / 600682-57 und IEEE 693

▶ ATEX nach EN 60079-0: 2009, EN 60079-18: 2009 EN 60079-31: 2009

II 2G Ex mb IIC Gb

DIN 4102-12

► Systemintegrität unter Feuer

E60 → Standart

E120 → Extern geschützte Unterstützung

^{*} In besonderen Fällen benötigte Module werden in kurzer Zeit produziert.

►► Planung Horizontale Verteilung

Wichtige Kriterien, die beim Entwurf von "Stromverteilungssystemen" zu berücksichtigen sind, die mit E-Line CR erstellt werden soll

- Die Kräfte und ungefähren Standorte der an das System anzuschließenden Lasten.
- Bestimmung des Gleichzeitigkeitsfaktors,
- Leistungs- und Kurzschlussströme von Transformatoren,
- Abstimmung mit anderen Verteilungssystemen (Wärme, Dampf, Wasser usw.),
- Festlegung der Route des auf dem Layoutplan erstellten Systems,
- Bestimmung der Aufhängerarten gemäß Plan,
- Bei Bedarf, Integration das Systems in die E-Line KX busbar.

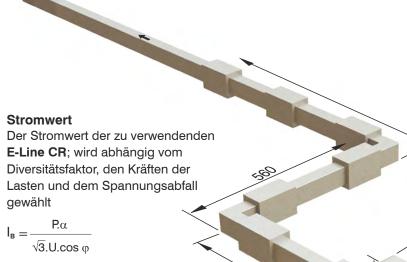
Projektbeispiel (Künstliches Verteilungsprojekt)

Synchronisationsfaktor (Diversität)

Das Synchronisationsfaktor (a), hängt von der Art und Anzahl der zugeführten Lasten ab. Es ist normalerweise "0,7" oder weniger. Es ist sehr schwierig, bei intensiven Beleuchtungsund motorbetriebenen Leitungen über "0,6" zu erreichen. In den Schweißanlagen von Automobilfabriken kann es sogar auf "0,30" fallen. Nur eine und große Belastung der Leitung kann bir "1" sein.

Spannungsabfall

Alle Werte, Formeln und praktischen Berechnungstabellen für die Berechnung von Spannungsabfällen finden Sie auf Seite 6 - 9. Hilfe erhalten Sie von den Abteilungen **Projekt & Design**


Kurzschlusswerte

Die getesteten Kurzschlussfestigkeitswerte sind in der Tabelle angegeben. Entsprechend den zu berechnenden Kurzschlusswerten ist ersichtlich, dass die Beständigkeit der busbar extrem hoch ist.

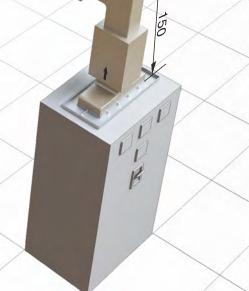
Busbar-Pläne

Nachfolgend finden Sie ein Beispiel für ein E-Line CR Busbar-Projekt. Um Pläne und Entdeckungen zu erstellen, können Sie Hilfe von unserem nächstgelegenen Händler oder der **Projektund Designabteilung** unseres Unternehmens erhalten.

> 54 m. (18 stk. x 3 m.) CRA 20504

 $I_B = Busbarstrom (A)$

P = Gesamtleistung der Lasten (W)

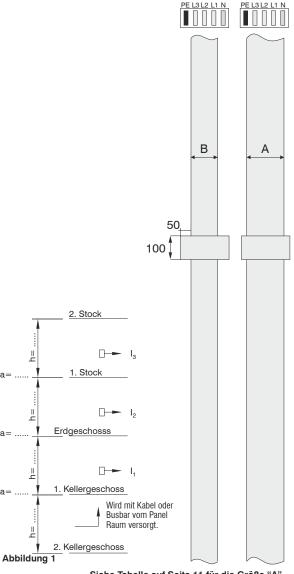

 α = Synchronisationsfaktor (Diversität)

U = Versorgungsspannung

 Zuerst wird ein CR-Schritt ausgewählt, der größer oder gleich IB in der obigen Formel ist.

 Der Spannungsabfall wird entsprechend dem ausgewählten E-Line CR-Typ berechnet.
 Wenn nicht, wird ein Querschnitt ausgewählt.

		K	omponenten Liste	
LaufNr.			Komponenten	Anzahl
1		CRA 20504 - STD	Busbar gerade Länge (20 X 3m.)	60 m.
2		CRA 20504 - D	Modul zur Drehung nach unten	2 stk.
3		CRA 20504 - R	Modul zur Drehung nach rechts	1 stk.
4		CRA 20504 - U	Modul zur Drehung nach oben	1 stk.
5		CRA 20504 - L	Modul zur Drehung nach links	1 stk.
6		CRA 20504 - P10	Panel-Eingangsmodul	1 stk.
7		CRA 20504 - S	Abschlussmodul	1 stk.
8		CRA 20504 - X95	Busbar Zwischenlänge	1 stk.
9		CRA 20504 - X120	Busbar Zwischenlänge	1 stk.
10		CRA 20504 - X122	Busbar Zwischenlänge	1 stk.
11		CRA 20504 - X200	Busbar Zwischenlänge	1 stk.
12		CRA 20504 - X174	Busbar Zwischenlänge	1 stk.
13		CRP 1650	Ausgangsbox	8 stk.
14	3	CRB 2550	Ausgangsbox	6 stk.


►► Planung Vertikale Verteilung

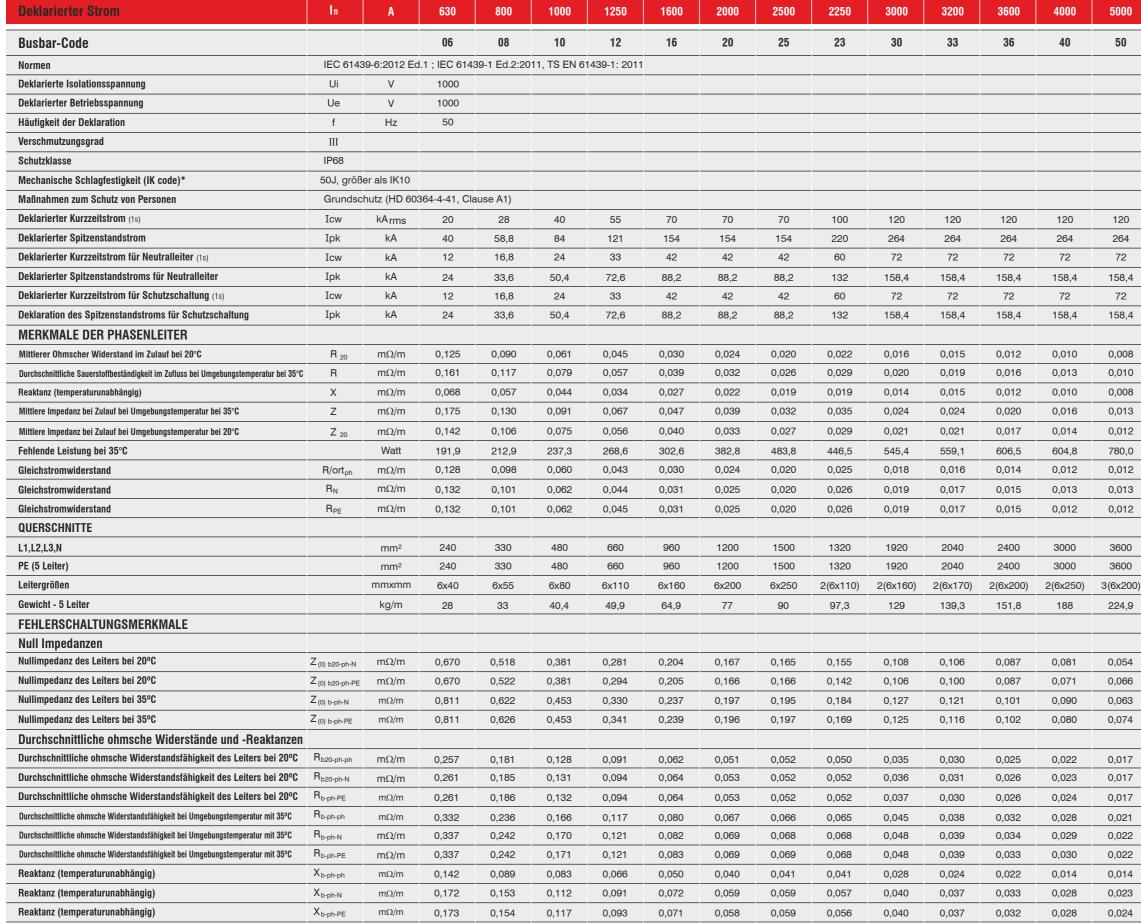
Die vertikalen Anwendungen von E-Line CR Busbars erfordern aufgrund der unterschiedlichen architektonischen Strukturen der Gebäude die Vorbereitung besonderer Projekte.

In der Abbildung unten wird ein vertikales Verteilungssystem vorgestellt und allgemeine Informationen zum Projekt bereitgestellt.

Siehe Tabelle auf Seite 11 für die Größe "A".

Vorprojektdesign und Kostenanalyse

Bitte senden Sie die folgenden Informationen zur Vorprojektgestaltung und Kostenanalyse an unsere Projekt-und Designabteilung..


- Wellenplatzierung und Messungen auf dem Architekturplan
- Bodenhöhen und Bodenstärken (a=...., h=....)
- Versorgungsart der vertikalen Leitung (Busbar und Kabel)

Sie können eine Kostenanalyse anfordern, indem Sie die obigen Informationen auf einer Zeichnung wie in Beispiel 1 dimensionieren und diese an unsere Firma per Fax oder E-Mail senden.

Anzahl der Leiter	B (mm)
3 Leiter	82
4 Leiter	100
4 ½ Leiter	118
5 Leiter	118
6 Leiter	136


►► Technische Daten

Aluminiumleiter (AI)

Vorsicht! Die Standardmontage der Gießharz Busbar ist abhängig von der Position (Schwert) der Leiter in einem Winkel von 90° zur Bodenebene. Diese Platzierung ist für das einfache Auftragen von zusätzlichem Harz erforderlich.

Berechnung des Spannungsabfalls

Im Allgemeinen erfolgt die Spannungsabfallberechnung der Leitungen, deren Energiverteilung- und transport durch die Busbar Kanalsysteme erfolgten unter Berücksichtigung der folgenden Kriterien.

$$\Delta U = \sqrt{3} \cdot L \cdot I \cdot (R_1 \cdot Cos\phi + X_1 \cdot Sin\phi) \cdot 10^{-3} [V]$$

∆U = Spannungsabfall (V)

L = Leitungslänge (m)

= Leitungs-oder Laststrom (A)

 $R_1 = \text{Widerstand } (m\Omega/m)$

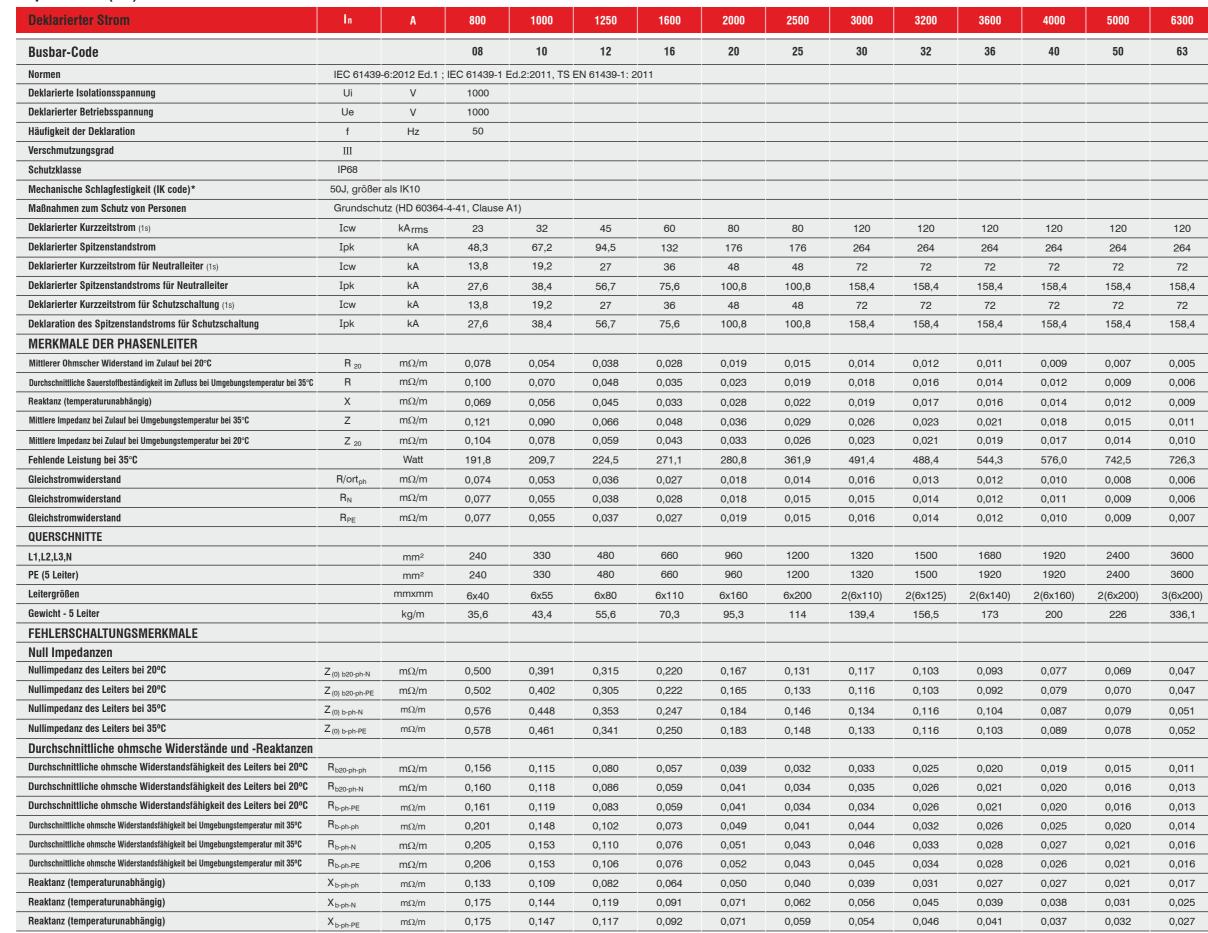
= Reaktanz (mΩ/m)

 $Cos\phi = Leistungsfaktor$

S = Schweißpunkt

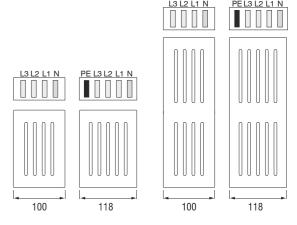
(¹)Die Eigenschaften aller Phasenleiter wurden gemäß IEC 61439-6 Anhang BB bestimmt.

⁽²⁾Die Fehlerschaltkreis-Nullimpedanzen wurden gemäß IEC 61439-6 Anhang CC bestimmt.


(3) Durchschnittliche ohmsche Widerstände und Reaktanzen der Fehlerschaltung wurden gemäß IEC 61439-6 Anhang CC bestimmt.

*Der IK10-Wert entspricht dem Energieniveau von 20J gemäß der Norm IEC 62262.

**Die Busbars der Serie CR werden mit mindestens 3 Leitern hergestellt. (3P)


►► Technische Daten

Kupferleiter (Cu)

Vorsicht! Die Standardmontage der Gießharz Busbar ist abhängig von der Position (Schwert) der Leiter in einem Winkel von 90° zur Bodenebene. Diese Platzierung ist für das einfache Auftragen von zusätzlichem Harz erforderlich.

Berechnung des Spannungsabfalls

Im Allgemeinen erfolgt die Spannungsabfallberechnung der Leitungen, deren Energiverteilung- und transport durch die Busbar Kanalsysteme erfolgten unter Berücksichtigung der folgenden Kriterien.

$$\Delta U = \sqrt{3} \cdot L \cdot I \cdot (R_1 \cdot Cos\phi + X_1 \cdot Sin\phi) \cdot 10^{-3} [V]$$

uU = Spannungsabfall (V)

= Leitungslänge (m)

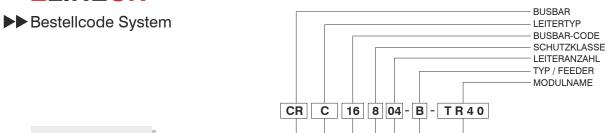
= Leitungs-oder Laststrom (A)

= Widerstand (m Ω /m)

 $\zeta_1 = \text{Reaktanz (m}\Omega/\text{m)}$

 $Cos\phi = Leistungsfaktor$

S = Schweißpunkt


¹⁾Die Eigenschaften aller Phasenleiter wurden gemäß IEC 61439-6 Anhang BB bestimmt.

⁽²⁾Die Fehlerschaltkreis-Nullimpedanzen wurden gemäß IEC 61439-6 Anhang CC bestimmt.

(3)Durchschnittliche ohmsche Widerstände und Reaktanzen der Fehlerschaltung wurden gemäß IEC 61439-6 Anhang CC bestimmt.

*Der IK10-Wert entspricht dem Energieniveau von 20J gemäß der Norm IEC 62262.

**Die Busbars der Serie CR werden mit mindestens 3 Leitern hergestellt. (3P)

Busbarname

Aluminium (Al) (Cu) **C** Kupfer

LEITERTYP

	RA -Leiter		RC I-Leiter	Leiter				
Anma Akımı	Busbar Kodu	Anma Akımı	Busbar Kodu					
630	06	800	08	6x40				
800	08	1000	10	6x55				
1000	10	1250	12	6x80				
1250	12	1600	16	6x110				
1600	16	2000	20	6x160				
2000	20	2500	25	6x200				
2500	25	-	-	6x250				
2250	23	3000	30	2(6x110)				
-	-	3200	32	2(6x125)				
-	-	3600	36	2(6x140)				
3000	30	4000	40	2(6x160)				
3200	33	-	-	2(6x170)				
3600	36	5000	50	2(6x200)				
4000	40	-	-	2(6x250)				
5000	50	6300	63	3(6x200)				

Α

BUSBAR CODE

IP 68 8 SCHUTZKLASSE

LEITERANZAHL	Code	Leiterkonfiguration										
LEITERANZARL	Code	L1	L2	L3	N	N	Saubere Erde	½ Saubere Erde				
3 Leiter	03	✓	✓	✓								
4 Leiter	04	✓	✓	✓	✓							
4 ½ Leiter	05	✓	✓	✓	✓			✓				
5 Leiter	06	✓	✓	✓	✓		✓					
6 Leiter	07	✓	✓	✓	√	1	✓					

Informationen zur bestimmungsgemäßen *TYP Verwendung der Busbar (B) Feeder Sie wird an Orten eingesetzt, an denen Gleichstrom genommen wird und der Strom

an zusätzlichen Punkten entnommen wird.

Busbar gerade Länge Busbar Zwischenlänge	STD X
Drehung nach oben	U
Drehung nach unten	
Drehung nach links	
Drehung nach rechts	R
Horizontaler Versatz nach links	LH
Horizontaler Versatz nach rechts	
Vertikaler Versatz nach oben	
Vertikaler Versatz nach unten Kombination nach oben links	
Kombination nach oben rechts	
Kombination nach unten links	
	KDR
Kombination nach links oben	KLU
Kombination nach rechts oben	
Kombination nach links unten	
Kombination nach rechts unten	KRD
Beenden	S
Reduktion	RD
"T"-Element	Т
Dilatation	
Erweiterung	DDT
Kreuzungsmodus	FDM
Daniel Einmann	P10
Panel-Eingang	
Panelmodul oben	
Panelmodul oben Panelmodul unten	PD20
Panelmodul oben Panelmodul unten Panelmodul rechts	PD20 PR30
Panelmodul oben Panelmodul unten Panelmodul rechts Panelmodul links	PD20 PR30 PL30
Panelmodul oben Panelmodul unten Panelmodul rechts	PD20 PR30 PL30
Panelmodul oben Panelmodul unten Panelmodul rechts Panelmodul links Panelmodul Über Transformator	PD20 PR30 PL30
Panelmodul oben Panelmodul unten Panelmodul rechts Panelmodul links Panelmodul Über Transformator Transformatormodul nach oben	PD20 PR30 PL30 P40 TR10 TU20
Panelmodul oben Panelmodul unten Panelmodul rechts Panelmodul links Panelmodul Über Transformator Transformatormodul nach oben Transformatormodul nach unten	PD20 PR30 PL30 P40 TR10 TU20 TD20
Panelmodul oben Panelmodul unten Panelmodul rechts Panelmodul links Panelmodul Über Transformator Transformatormodul nach oben Transformatormodul nach unten Transformatormodul nach rechts	PD20 PR30 PL30 P40 TR10 TU20 TD20 TR30
Panelmodul oben Panelmodul unten Panelmodul rechts Panelmodul links Panelmodul Über Transformator Transformatormodul nach oben Transformatormodul nach unten Transformatormodul nach rechts Transformatormodul nach links	PD20 PR30 PL30 P40 TR10 TU20 TD20 TR30 TL30
Panelmodul oben Panelmodul unten Panelmodul rechts Panelmodul links Panelmodul Über Transformator Transformatormodul nach oben Transformatormodul nach unten Transformatormodul nach rechts Transformatormodul nach links Über Transformator	PD20 PR30 PL30 P40 TR10 TU20 TD20 TR30
Panelmodul oben Panelmodul unten Panelmodul rechts Panelmodul links Panelmodul Über Transformator Transformatormodul nach oben Transformatormodul nach unten Transformatormodul nach rechts Transformatormodul nach links Über Transformator Transformatormodul	PD20 PR30 PL30 P40 TR10 TU20 TD20 TR30 TL30 TR40
Panelmodul oben Panelmodul unten Panelmodul rechts Panelmodul links Panelmodul Über Transformator Transformatormodul nach oben Transformatormodul nach unten Transformatormodul nach rechts Transformatormodul nach links Über Transformator	PD20 PR30 PL30 P40 TR10 TU20 TD20 TR30 TL30 TR40

MODUL NAME

► Gerader Schienenkasten

Busbar-Kanal Zuführung - STD

Beispielauftrag:

CRA 25806 - STD

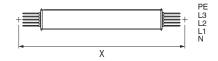
2500 A, Aluminium, Zuführung, IP 68, mit 5 Leitern

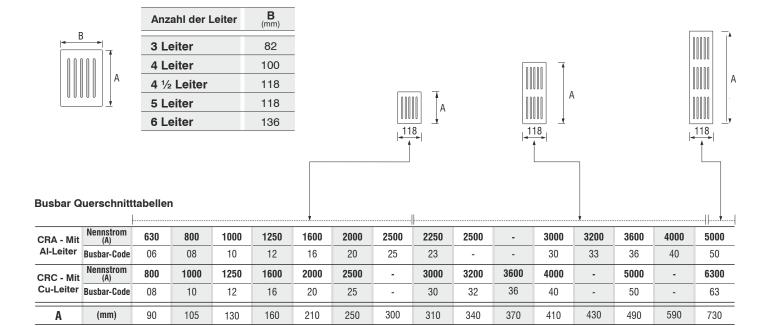
Anwendungsbereiche:

- Zwischen den Transformatorplatinen,
- Bei Versorgung der Haupt-und Sekundärplatine
- Bei Alternator, Entschädigungsversorgung
- Kopllungsfehler

Busbar-Kanal Zwischenlänge

X Zwischenlänge

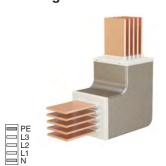

Beispielauftrag:


CRA 20806 - X - 147

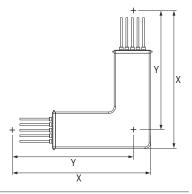
2500 A, Kupfer, Zuführung, IP 68, mit 5 Leitern, 1470 mm Zwischenlänge

Info:

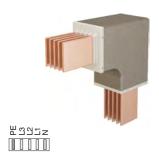
Zuführung minimale Zwischenlänge= 450 mm



Drehung nach oben unten



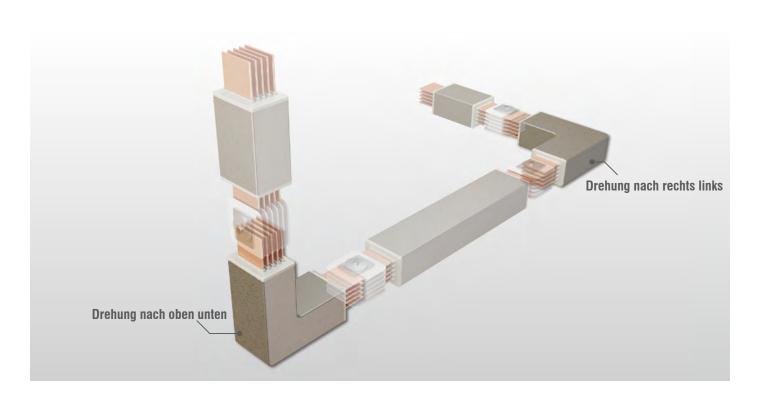
- U - D


Beispielauftrag:

CRC 32806 - U 3200 A, Kupfer, Zuführung, IP 68, mit 5 Leitern

Anzahl der Leiter	X (mm)	Y (mm)
3 Leiter	407	366
4 Leiter	425	375
4 ½ Leiter	443	384
5 Leiter	443	384
6 Leiter	461	393

Drehung nach rechts links


- R

- L

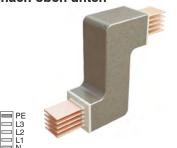
Beispielauftrag:

2000 A, Kupfer, Zuführung, IP 68, mit 5 Leitern

CRC 20806 - R В

■ Die angegebenen Abmessungen sind Mindestwerte.

■ Bitte kontaktieren Sie unsere Firma für spezielle Module.

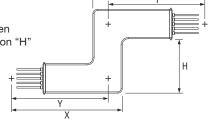

CRA - Mit Al-Leiter	Nennstrom (A)	630	800	1000	1250	1600	2000	2500	2250	2500	-	3000	3200	3600	4000	5000
	Busbar-Code	06	08	10	12	16	20	25	23	-	-	30	33	36	40	50
CRC - Mit	Nennstrom (A)	800	1000	1250	1600	2000	2500	-	3000	3200	3600	4000	-	5000	-	6300
Cu-Leiter	Busbar-Code	08	10	12	16	20	25	-	30	32	36	40	-	50	-	63
Α	(mm)	415	430	455	485	535	575	625	635	665	695	735	755	815	915	1055
В	(mm)	370	377	390	405	430	450	475	480	495	510	530	540	570	620	690

▶Rückkehrmodul

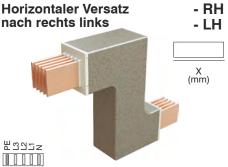
- UV

Beispielauftrag: - DV

CRC 20806 - UV25


Bilgi:

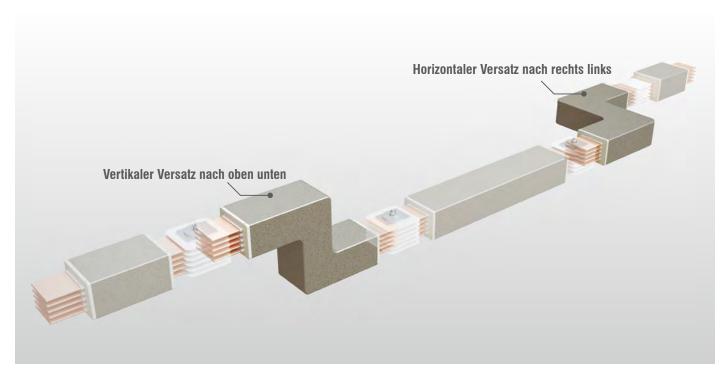
H= min. 180 mm


Bitte konsultieren Sie unser Unternehmen

in besonderen Fällen für die Messung von "H"

Anzahl der Leiter	X (mm)	Y (mm)	H (max.)		
3 Leiter	407	366	732		
4 Leiter	425	375	750		
4 ½ Leiter	443	384	768		
5 Leiter	443	384	768		
6 Leiter	461	393	786		

Beispielauftrag:

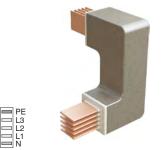

CRC 32806 - RH60

X=600 mm, 3200 A, Kupfer Zuführung, IP 68, mit 5 Leitern

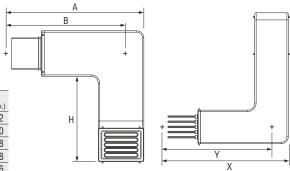
Info:

C=min: 150 mm, für maximale Abmessungen * Siehe Tabelle. Es wird an Orten eingesetzt, an denen es nicht durch zwei horizontale Drehmodule versetzt werden kann.

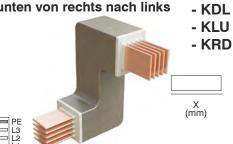
■ Die angegebenen Abmessungen sind Mindestwerte. ■ Bitte kontaktieren Sie unsere Firma für spezielle Module.


CRA - Mit Al-Leiter	Nennstrom (A)	630	800	1000	1250	1600	2000	2500	2250	2500	-	3000	3200	3600	4000	5000
	Busbar-Code	06	08	10	12	16	20	25	23	-	-	30	33	36	40	50
CRC - Mit	Nennstrom (A)	800	1000	1250	1600	2000	2500	-	3000	3200	3600	4000	-	5000	-	6300
Cu-Leiter	Busbar-Code	08	10	12	16	20	25	-	30	32	36	40	-	50	-	63
A (min.)	(mm)	415	430	455	485	535	575	625	635	665	695	735	755	815	915	1055
B (min.)	(mm)	370	377	390	405	430	450	475	480	495	510	530	540	570	620	690
C (max.)	(mm)	740	755	780	810	860	900	950	960	990	1020	1060	1080	1140	1240	1380

▶Rückkehrmodul


- KUL
- KDR
- KRU - KLD

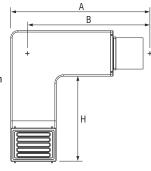
- KUR

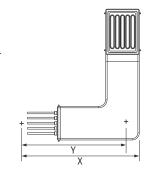

Beispielauftrag: CRC 32806 - B - KUL

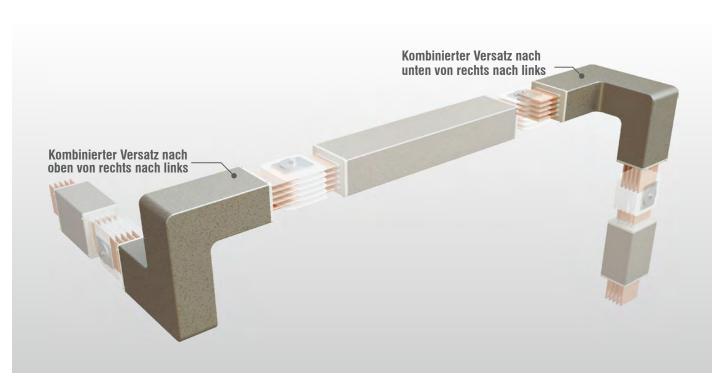
> 3200 A, Kupfer Zuführung, IP 68, mit 5 Leitern +

Anzahl der Leiter	X (mm)	Y (mm)	H (max.)
3 Leiter	407	366	732
4 Leiter	425	375	750
4 ½ Leiter	443	384	768
5 Leiter	443	384	768
6 Leiter	461	393	786

Kombinierter Versatz nach unten von rechts nach links

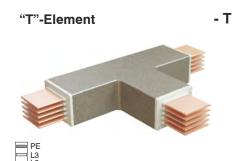



Beispielauftrag:


CRC 32806 - B - KDL

3300 A, Kupfer

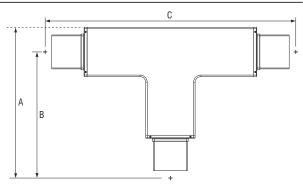
Zuführung, IP 68, mit 5 Leitern



■ Die angegebenen Abmessungen sind Mindestwerte. ■ Bitte kontaktieren Sie unsere Firma für spezielle Module.

CRA - Mit Al-Leiter	Nennstrom (A)	630	800	1000	1250	1600	2000	2500	2250	2500	-	3000	3200	3600	4000	5000
	Busbar-Code	06	08	10	12	16	20	25	23	-	-	30	33	36	40	50
CRC - Mit	Nennstrom (A)	800	1000	1250	1600	2000	2500	-	3000	3200	3600	4000	-	5000		6300
Cu-Leiter	Busbar-Code	08	10	12	16	20	25	-	30	32	36	40	-	50	-	63
A (min.)	(mm)	415	430	455	485	535	575	625	635	665	695	735	755	815	915	1055
B (min.)	(mm)	370	377	390	405	430	450	475	480	495	510	530	540	570	620	690

▶ Standardmodule



Beispielauftrag:

CRC 25806 - T

2500 A, Kupfer,

Zuführung, IP 68, mit 5 Leitern

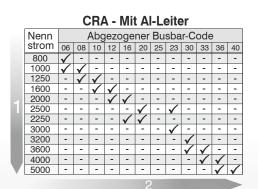
1000 mm

Reduktion

 - RD

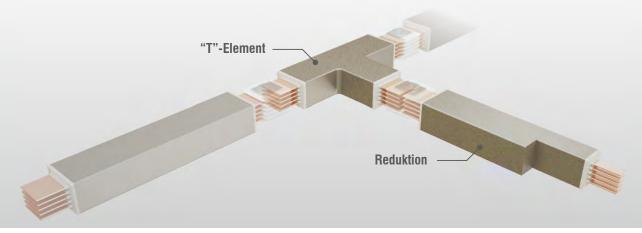
Reduktionsmodul

Wird verwendet um den Busbar-Querschnitt zu ändern. Beispielauftrag:


CRC 20806 - RD17

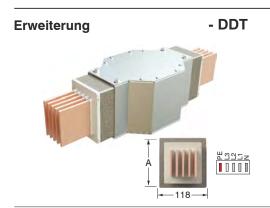
2000A / 1600A, Kupfer

Zuführung, IP 68, mit 5 Leitern



Es liegt in der Verantwortung des Kunden, die Reduktionsseite auszuwählen, zu verwenden und elektrisch zu schützen

	Nenn											•
	strom	08	10	12	16	20	25	30	32	36	40	50
	1000	\checkmark	-	-	-	-	-	-	-	-	-	-
	1250	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-
	1600	-	\checkmark	\checkmark	-	-	-	-	-	-	-	-
	2000	-	-	\checkmark	\checkmark	-	-	-	-	-	-	-
1	2500	-	-	-	\checkmark	\checkmark	-	-	-	-	-	-
ш	3000	-	-	-	-	\checkmark	\checkmark	-	-	-	-	-
	3200	-	-	-	-	-	\checkmark	\checkmark	-	-	-	-
	3600	-	-	-	-	-	-	\checkmark	\checkmark	-	-	-
	4000	-	-	-	-	-	-	-	\checkmark	\checkmark	-	-
	5000	-	-	-	-	-	-	-	-	\checkmark	\checkmark	-
V.	6300	-	-	-	-	-	-	-	-	ı	\checkmark	\checkmark
	2										—	



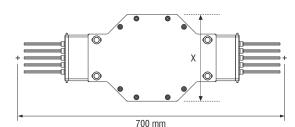
- Die angegebenen Abmessungen sind Mindestwerte. Bitte kontaktieren Sie unsere Firma für spezielle Module.
- Verwenden Sie die folgende Tabelle für aktuelle Stromstufen und Busbar-Codes.

• verweituen die de lotgende rabene für aktuene Stromstufen und busbar-Codes.																
CRA - Mit	Nennstrom (A)	630	800	1000	1250	1600	2000	2500	2250	2500	-	3000	3200	3600	4000	5000
Al-Leiter	Busbar-Code	06	08	10	12	16	20	25	23	-	-	30	33	36	40	50
CRC - Mit	Nennstrom (A)	800	1000	1250	1600	2000	2500	-	3000	3200	3600	4000	-	5000	-	6300
Cu-Leiter	Busbar-Code	08	10	12	16	20	25	-	30	32	36	40	-	50	-	63
Α	(mm)	415	430	455	485	535	575	625	635	665	695	735	755	815	915	1055
В	(mm)	370	377	390	405	430	450	475	480	495	510	530	540	570	620	690
С	(mm)	740	754	780	810	860	900	950	960	990	1020	1060	1080	1140	1240	1380

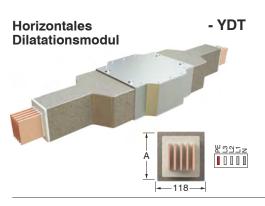
▶ Dilatationsmodule

Beispielauftrag:

CRC 25806 - DDT


2500 A, Kupfer

Zuführung, IP 68, mit 5 Leitern


Zwischen jeder Schicht wird 1 verwendet.

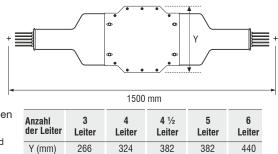
Wird in vertikalen Linien von mehrstöckigen Gebäuden verwendet.

Wir empfehlen, dass Sie sich während der Entwurfsphase von unserem Unternehmen beraten lassen.

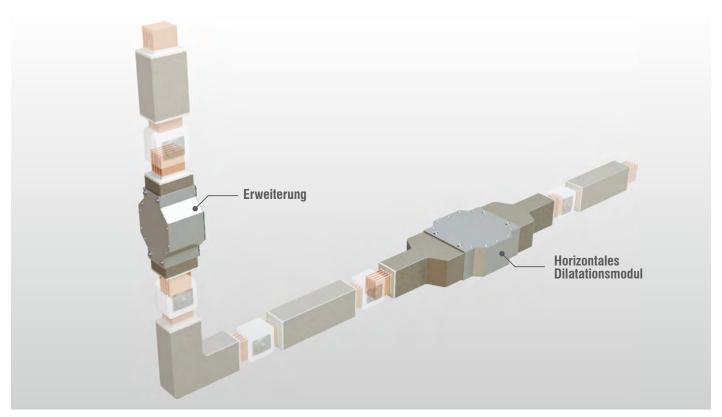
Anzahl	3	4	4 ½	5	6
der Leiter	Leiter	Leiter	Leiter	Leiter	Leiter
X (mm)	187	205	223	223	241

Beispielauftrag:

CRC 25806 - YDT


2500 A, Kupfer

Zuführung, IP 68, mit 5 Leitern

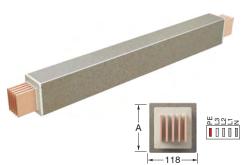

Es wird als Erweiterungselement in langen horizontalen Linien bei 40 m und in

Gebäudeausdehnungsübergängen verwendet.

Wir empfehlen, dass Sie sich während der Entwurfsphase von unserem Unternehmen beraten lassen.

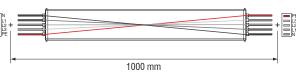
Vorsicht! Nach der Montage wird die Länge 1500 mm betragen.

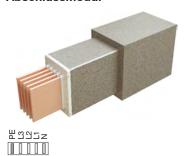
■ Die angegebenen Abmessungen sind Mindestwerte. ■ Bitte kontaktieren Sie unsere Firma für spezielle Module.


Hinweis:1) Wenn die Busbar-Leitung die Gebäudeerweiterung passiert, muss unbedingt ein Erweiterungsmodul verwendet werden. 2) Verwenden Sie das Dilatationsmodul in sehr langen freien Leitungen (> 75 m.), die vom Endabschlussmodul geschlossen wurden und nicht auf dem Aufhänger befestigt sind.

3) Die Beweglichkeit des Dilatationsmoduls beträgt 25 mm.

▶ Abschlussmodule

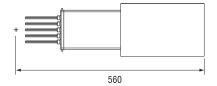


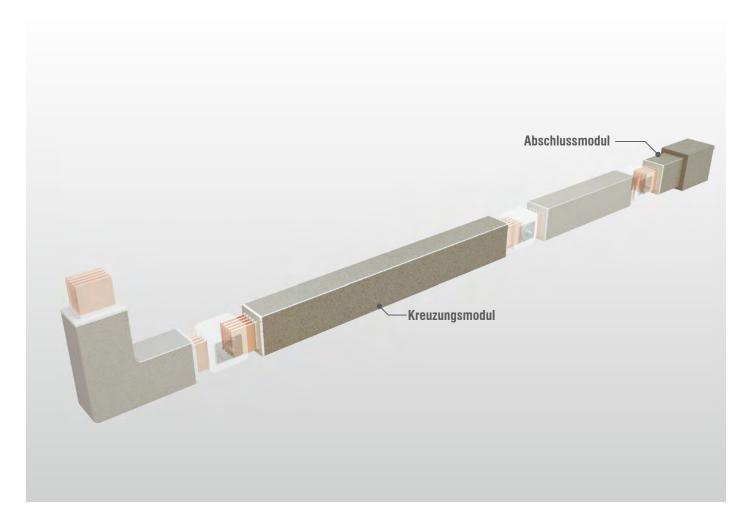

Beispielauftrag: CRC 25806 - FDM

2500 A, Kupfer Zuführung, IP 68, mit 5 Leitern

Es wird verwendet, um die Phasenfolgenänderungen zu korrigieren, die durch horizontal-vertikale Drehungen von Busbar-Leitungen verursacht werden.

Abschlussmodul

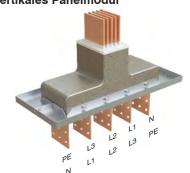

Beispielauftrag:


- S

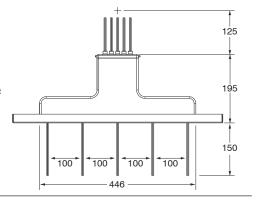
CRC 25806 - S

2500 A, Kupfer Zuführung, IP 68, mit 5 Leitern

Wird verwendet, um Zeilenumbrüche zu schließen.



▶▶ Panel- / Transformatormodule


Vertikales Panelmodul

- P10 Beispielauftrag:
- TR10 CRC 25806 P10

2500 A, Kupfer, Zuführung, IP 68, mit 5 Leitern Zum Anmelden in die Zwischenablage

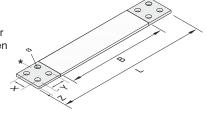
Bitte verwenden Sie die Tabellen auf Seite 21, 22 für die Anschlussmaße.

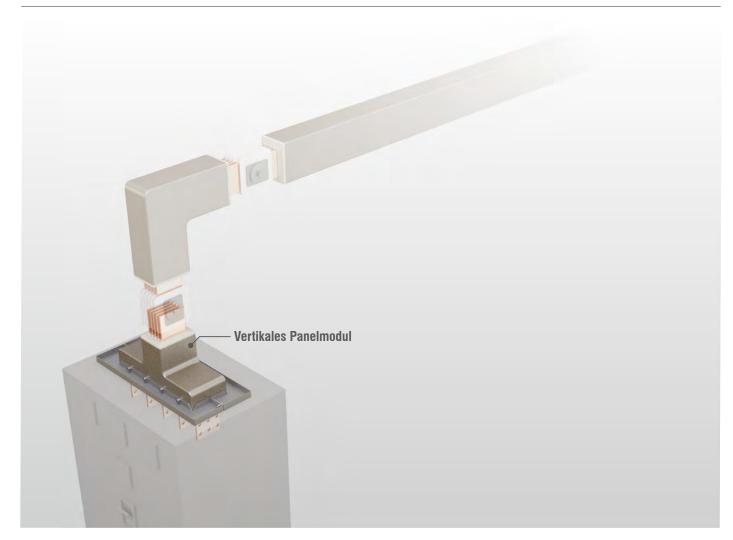
Flexible Elemente

- F Beispielauftrag:

CRC 0800 - F

*Die Schuhverwendung wird je nach Einsatzort bearbeitet. Für die Verbindung zwischen der Transformatorbuchse und der Busbar wird sie für die Verbindung zwischen dem Panel und der Busbar verwendet.

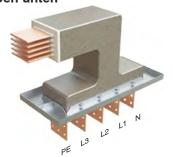

B=....mm


X =mm

Y =mm

Z =mm

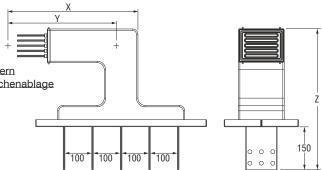
ø=....mm



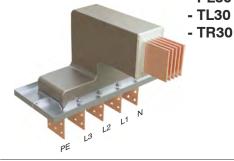
- Die angegebenen Abmessungen sind Mindestwerte. Bitte kontaktieren Sie unsere Firma für spezielle Module.
- Der Abstand zwischen den Leitern kann eine Toleranz von ± 5 mm aufweisen.

▶▶ Panel- / Transformatormodule

- PU20


- PD20 Beispielauftrag:

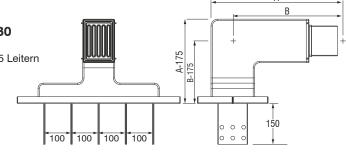
CRC 36806 - PU20 - TU20

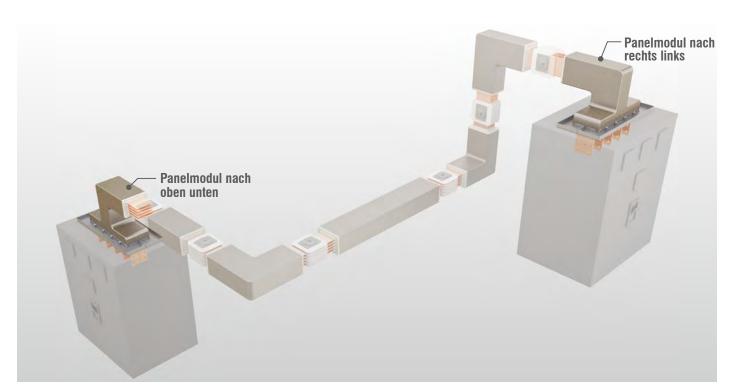

3600 A, Kupfer, - TD20

Zuführung, IP 68, mit 5 Leitern Zum Anmelden in die Zwischenablage

Anzahl der Leiter	X (mm)	Y (mm)	Z (mm)
3 Leiter	407	366	457
4 Leiter	425	375	475
4 1/2 Leiter	443	384	493
5 Leiter	443	384	493
6 Leiter	461	303	511

Panelmodul nach rechts links


- PR30


- PL30

Beispielauftrag: - TL30 CRC 36806 - PR30

3600 A, Kupfer, Zuführung, IP 68, mit 5 Leitern Zum Anmelden in die

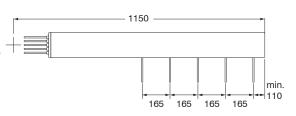
Zwischenablage

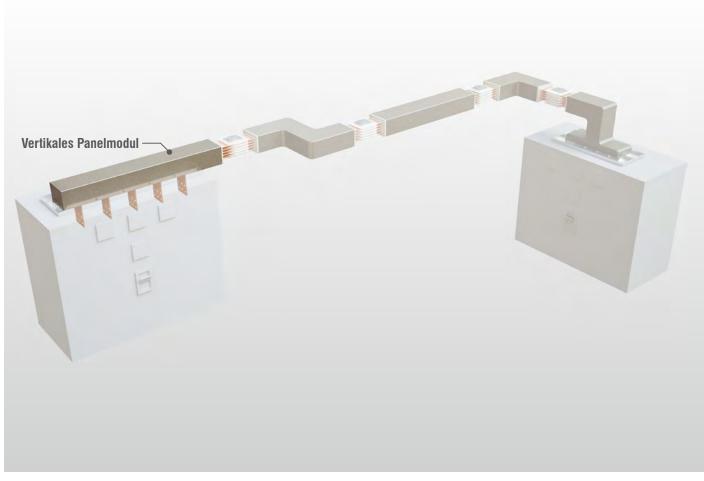
- Die angegebenen Abmessungen sind Mindestwerte. Bitte kontaktieren Sie unsere Firma für spezielle Module.
- Verwenden Sie die folgende Tabelle für aktuelle Stromstufen und Busbar-Codes.

CRA - Mit	Nennstrom (A)	630	800	1000	1250	1600	2000	2500	2250	2500	-	3000	3200	3600	4000	5000
Al-Leiter	Busbar-Code	06	08	10	12	16	20	25	23	-	-	30	33	36	40	50
CRC - Mit	Nennstrom (A)	800	1000	1250	1600	2000	2500	-	3000	3200	3600	4000	-	5000	-	6300
Cu-Leiter	Busbar-Code	08	10	12	16	20	25	-	30	32	36	40	-	50	-	63
A	(mm)	415	430	455	485	535	575	625	635	665	695	735	755	815	915	1055
В	(mm)	370	377	390	405	430	450	475	480	495	510	530	540	570	620	690

▶▶ Panel- / Transformatormodule

Vertikales Panelmodul

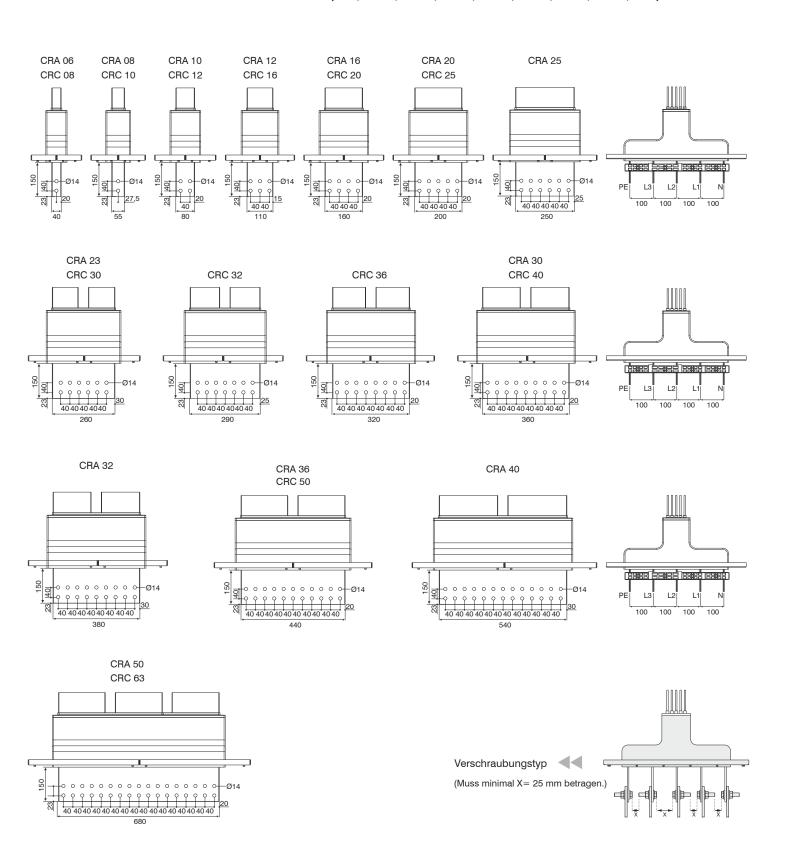

- P40



Beispielauftrag:

CRC 36806 - P40
3600 A, Kupfer
Zuführung, IP 68, mit 5 Leitern
Zum Verlassen der Zwischenablage
Bitte verwenden Sie die Tabellen auf
Seite 21, 22 für die Anschlussmaße.

Der Abstand zwischen den Leitern kann eine Toleranz von \pm 5 mm aufweisen.

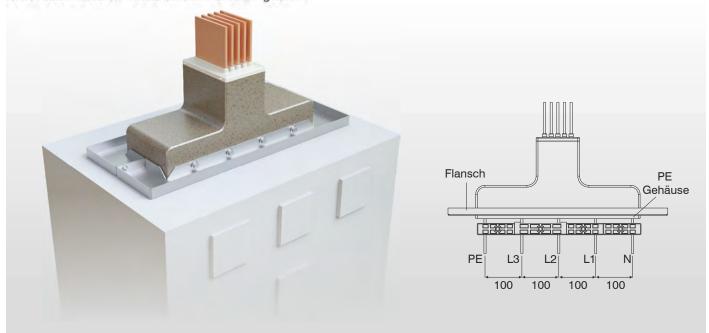

■ Die angegebenen Abmessungen sind Mindestwerte. ■ Bitte kontaktieren Sie unsere Firma für spezielle Module.

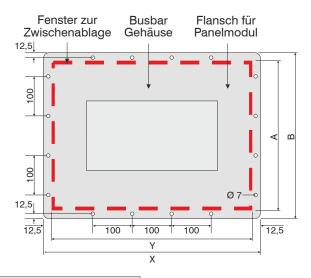
►► Panel- / Transformatormodule

Zweidimensionale technische Zeichnungen für Panel-und Transformatormodule

Obere Module für Panele und Transformatoren (P10, TR10, PU20, TU20, PD20, TD20, PL30, PR30, P40)

- Der Abstand zwischen den Leitern kann eine Toleranz von ± 5 mm aufweisen.
- Bitte kontaktieren Sie unsere Firma für spezielle Module. Die angegebenen Abmessungen sind Mindestwerte.





Flanschabmessungstabelle der Panelenmodule

Panelmodule werden mit Standardflanschen hergestellt.

Anzahl der Leiter	X (mm)	Y (mm)
3 Leiter	400	355
4 Leiter	500	455
4 ½ Leiter	600	555
5 Leiter	600	555
6 Leiter	700	655

Alumin	ium (AI)	Kupfe	r (Cu)				
Nennstrom	Busbar Code	Nennstrom	Busbar Code	Leiter	A (mm)	B (mm)	Anzahl der Löcher entlang der B-Länge
630	06	800	08	6x40	145	190	2
800	80	1000	10	6x55	160	205	2
1000	10	1250	12	6x80	185	230	2
1250	12	1600	16	6x110	215	260	2
1600	16	2000	20	6x160	265	310	2
2000	20	2500	25	6x200	305	350	4
2500	25	-	-	6x250	355	400	4
2250	23	3000	30	2(6x110)	365	410	4
-	-	3200	32	2(6x125)	395	440	4
-	-	3600	36	2(6X140)	425	470	4
3000	30	4000	40	2(6x160)	465	510	4
3200	33	-	-	2(6x170)	485	530	4
3600	36	5000	50	2(6x200)	545	590	4
4000	40	-	-	2(6x250)	645	690	6
5000	50	6300	63	3(6x200)	785	830	8

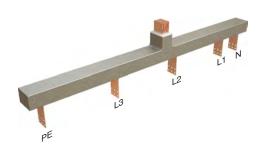
▶▶ Transformatormodule

Transformatormodul

- TR40

Beispielauftrag:

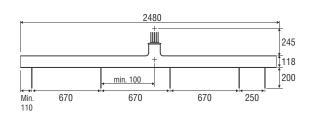
CRC 25806 - TR40


2500 A, Kupfer Zuführung, IP 68, mit 5 Leitern

Bitte verwenden Sie die Tabellen auf Seite 21 für die Anschlussmaße.

Transformatormodul

- TR60



Beispielauftrag:

CRC 25806 - TR60

2500 A, Kupfer Zuführung, IP 68, mit 5 Leitern

Bitte verwenden Sie die Tabellen auf Seite 21 für die Anschlussmaße.

Unser Unternehmen bietet Projektunterstützung für Busbar-Systemanwendungen zwischen dem Transformator und der Hauptplatine.

Für die Projekterstellung:

Architektonische Anordnung der Stationsräume, Draufsichten und Ansichten,

Abstände zwischen den Transformatorabmessungen und der Buchsen,

Panelabmessungen.

Transformatormodul

Transformatormodul

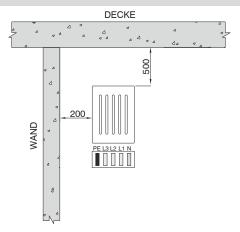
■ Die angegebenen Abmessungen sind Mindestwerte. ■ Bitte kontaktieren Sie unsere Firma für spezielle Module.

►► Zusätzliche Werkzeuge

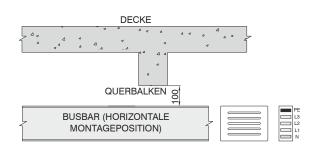
A	luminiun	n		Kupfer		
Nennstrom	4 Leiter	5 Leiter	Nennstrom	4 Leiter	5 Leiter	Querschnitt
630	3134311	3134317	800	3134428	3134434	6*40
800	3134320	3134326	1000	3134437	3134443	6*55
1000	3134329	3134335	1250	3134446	3134452	6*80
1250	3134338	3134344	1600	3134455	3134461	6*110
1600	3134347	3134353	2000	3134464	3134470	6*160
2000	3134356	3134362	2500	3134473	3134479	6*200
2500	3134374	3134380	-	-	-	6*250
2250	3134365	3134371	3000	3134482	3134488	2*6*110
-	-	-	3200	3134491	3134497	2*6*125
-	-	-	3600	3134500	3134506	2*6*140
3000	3134383	3134389	4000	3134509	3134515	2*6*160
3200	3134392	3134398	-	-	-	2*6*170
3600	3134401	3134407	5000	3134518	3134524	2*6*200
4000	3134410	3134416	-	-	-	2*6*250
5000	3134419	3134425	6300	3134527	3134533	3*6*200

A	luminiun	n		Kupfer		
Nennstrom	4 Leiter	5 Leiter	Nennstrom	4 Leiter	5 Leiter	Querschnitt
630	3134312	3134318	800	3134429	3134435	6*40
800	3134321	3134327	1000	3134438	3134444	6*55
1000	3134330	3134336	1250	3134447	3134453	6*80
1250	3134339	3134345	1600	3134456	3134462	6*110
1600	3134348	3134354	2000	3134465	3134471	6*160
2000	3134357	3134363	2500	3134474	3134480	6*200
2500	3134375	3134381	-	-	-	6*250
2250	3134366	3134372	3000	3134483	3134489	2*6*110
-	-	-	3200	3134492	3134498	2*6*125
-	-	-	3600	3134501	3134507	2*6*140
3000	3134384	3134390	4000	3134510	3134516	2*6*160
3200	3134393	3134399	-	-	-	2*6*170
3600	3134402	3134408	5000	3134519	3134525	2*6*200
4000	3134411	3134417	-	-	-	2*6*250
5000	3134420	3134426	6300	3134528	3134534	3*6*200

Vertikaler Leitungsbefestigungssatz



Δ	luminiun	n		Kupfer		
Nennstrom	4 Leiter	5 Leiter	Nennstrom	4 Leiter	5 Leiter	Querschnitt
630	3134310	3134316	800	3134427	3134433	6*40
800	3134319	3134325	1000	3134436	3134442	6*55
1000	3134328	3134334	1250	3134445	3134451	6*80
1250	3134337	3134343	1600	3134454	3134460	6*110
1600	3134346	3134352	2000	3134463	3134469	6*160
2000	3134355	3134361	2500	3134472	3134478	6*200
2500	3134373	3134379	-	-	-	6*250
2250	3134364	3134370	3000	3134481	3134487	2*6*110
-	-	-	3200	3134490	3134496	2*6*125
-	-	-	3600	3134499	3134505	2*6*140
3000	3134382	3134388	4000	3134508	3134514	2*6*160
3200	3134391	3134397	-	-	-	2*6*170
3600	3134400	3134406	5000	3134517	3134523	2*6*200
4000	3134409	3134415	-	-	-	2*6*250
5000	3134418	3134424	6300	3134526	3134532	3*6*200


►► Vertikale und horizontale Gießharzanwendungen

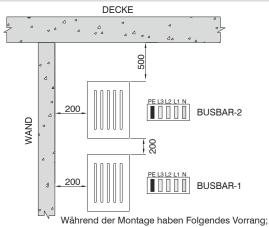


ABBİLDUNG 5 - HORIZONTALE POSITION DES QUERBALKENDURCHGANGS

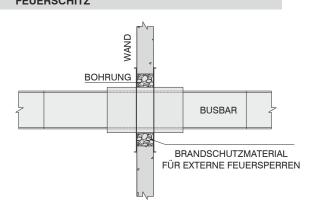
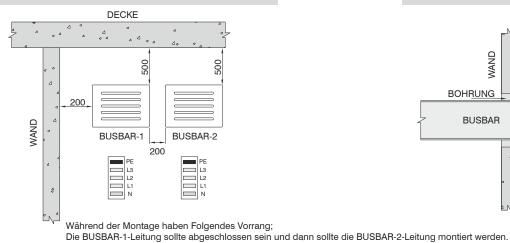


ABBİLDUNG 2 - VERTIKALE POSITION



Die BUSBAR-1-Leitung sollte abgeschlossen sein und dann sollte die BUSBAR-2-Leitung montiert werden.

ABBİLDUNG 6 - PROBE WANDÜBERGANG MIT FEUERSCHITZ

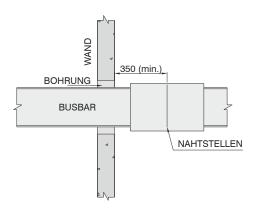
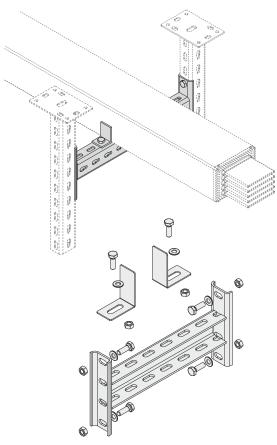


ABBİLDUNG 3 - HORIZONTALE POSITION

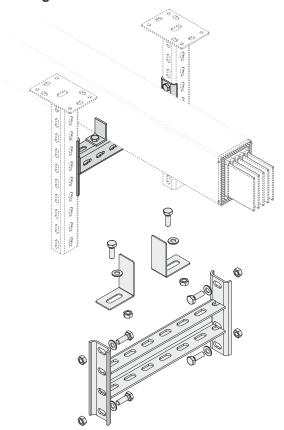
DUNC 4 VEDTIKALE DOCITION

ABBİLDUNG 7 - STANDARD WANDÜBERGANG

ABBILDUNG 4 - VERTIKALE POSITION DES QUERBALKENDURCHGANGS

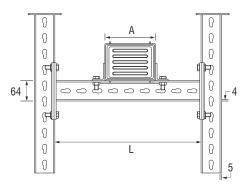


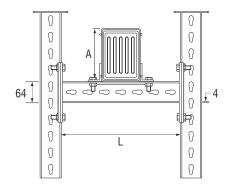
Vorsicht!


- Abstand der Busbar zur Decke für die Montage muss mindestens 500 mm oder mehr betragen.
- Stellen Sie sicher, dass sich zwischen den Querbalken keine Nahtstelle befindet.
- Die oben angegebenen Abmessungen sind Mindestwerte.
- Alle Maße sind in mm angegeben.

▶ Aufhängerelemente

Träger Deckentyp CR-UT Zweiwege-Aufhängungsset mit horizontaler Anwendung

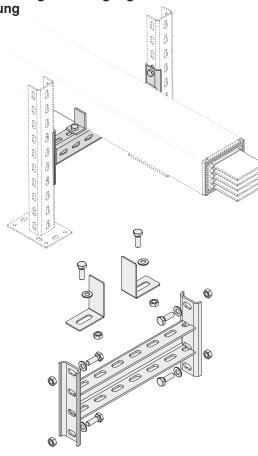

Träger Deckentyp CR-UT Zweiwege-Aufhängungsset für vertikale Anwendungen



CRA Al-Lo		CRC - Mit Cu-Leiter		Leiter	L	Α	Bestellcode
Nennstrom	Busbar Code	Nennstrom	Busbar Code	Querschnitt	(mm)	(mm)	
630	06	800	08	6x40	300	90	3108704
800	08	1000	10	6x55	300	105	3108704
1000	10	1250	12	6x80	300	130	3108704
1250	12	1600	16	6x110	350	160	3108705
1600	16	2000	20	6x160	400	210	3108706
2000	20	2500	25	6x200	400	250	3108706
2500	25	-		6x250	450	300	3108707
2250	23	3000	30	2(6x110)	500	310	3108708
-	-	3200	32	2(6x125)	500	340	3108708
-	-	3600	36	2(6x140)	600	370	3108709
3000	30	4000	40	2(6x160)	600	410	3108709
3200	33	-	-	2(6x170)	600	430	3108709
3600	36	5000	50	2(6x200)	700	490	3108710
4000	40	-	-	2(6x250)	800	590	3108711
5000	50	6300	63	3(6x200)	900	730	3108712

Hinweis: Anstelle von UPY-Profilen können UDY-Profile verwendet werden.

CRA Al-Lo		CRC Cu-L		Leiter	L	Α	Bestellcode
Nennstrom	Busbar Code	Nennstrom	Busbar Code	Querschnitt	(mm)	(mm)	
630	06	800	08	6x40	350	90	3108705
800	08	1000	10	6x55	350	105	3108705
1000	10	1250	12	6x80	350	130	3108705
1250	12	1600	16	6x110	350	160	3108705
1600	16	2000	20	6x160	350	210	3108705
2000	20	2500	25	6x200	350	250	3108705
2500	25	-		6x250	350	300	3108705
2250	23	3000	30	2(6x110)	350	310	3108705
-	-	3200	32	2(6x125)	350	340	3108705
-	-	3600	36	2(6x140)	350	370	3108705
3000	30	4000	40	2(6x160)	350	410	3108705
3200	33	-	-	2(6x170)	350	430	3108705
3600	36	5000	50	2(6x200)	350	490	3108705
4000	40	-	-	2(6x250)	350	590	3108705
5000	50	6300	63	3(6x200)	350	730	3108705


[■] Nur in besonderen Fällen ist eine horizontale Montage möglich.

►► Aufhängerelemente

Bestellcode

Träger Bodentyp CR-UT Zweiwege-Aufhängungsset mit horizontaler Anwendung

3(6x200) Œ H (FUI)

CRA - Mit

Al-Leiter

Nennstrom

CRC - Mit

Nennstrom

Leiter

Querschnitt

6x40

6x55

6x80

6x110

6x160

6x200

6x250

2(6x110)

2(6x125)

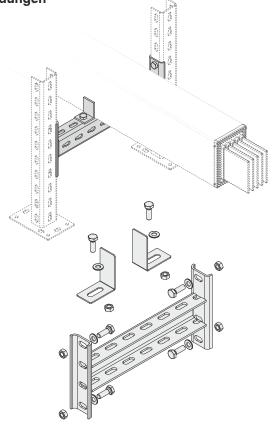
2(6x140)

2(6x160)

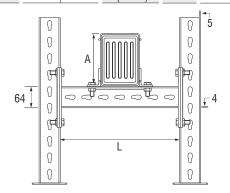
2(6x170)

2(6x200)

2(6x250)


L

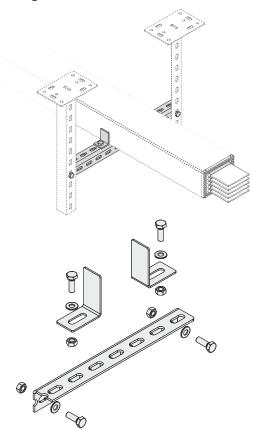
(mm)


Α

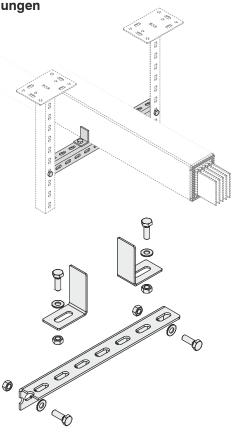
(mm)

Träger Bodentyp	
CR-UT Zweiwege-Aufhän	gungsset für vertikale
Anwendungen	fores.

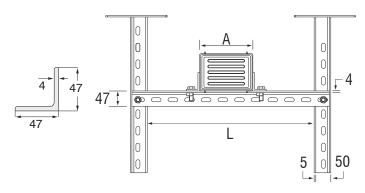
CRA Al-Lo		CRC Cu-L		Leiter	L	Α	Bestellcode
Nennstrom	Busbar Code	Nennstrom	Busbar Code	Querschnitt	(mm)	(mm)	
630	06	800	08	6x40	350	90	3108705
800	08	1000	10	6x55	350	105	3108705
1000	10	1250	12	6x80	350	130	3108705
1250	12	1600	16	6x110	350	160	3108705
1600	16	2000	20	6x160	350	210	3108705
2000	20	2500	25	6x200	350	250	3108705
2500	25	-	-	6x250	350	300	3108705
2250	23	3000	30	2(6x110)	350	310	3108705
-	-	3200	32	2(6x125)	350	340	3108705
-	-	3600	36	2(6x140)	350	370	3108705
3000	30	4000	40	2(6x160)	350	410	3108705
3200	33	-	-	2(6x170)	350	430	3108705
3600	36	5000	50	2(6x200)	350	490	3108705
4000	40	-	-	2(6x250)	350	590	3108705
5000	50	6300	63	3(6x200)	350	730	3108705

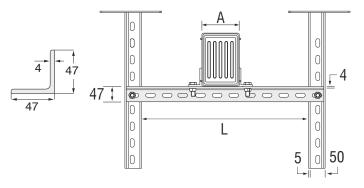


Nur in besonderen Fällen ist eine horizontale Montage möglich.

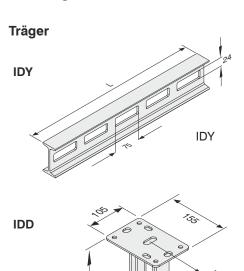

▶ Aufhängerelemente

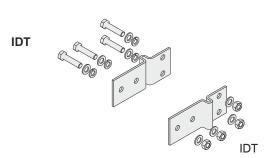
EAE


Träger Deckentyp CR-L Zweiwege-Aufhängungsset mit horizontaler Anwendung


Träger Deckentyp
CR-L Zweiwege-Aufhängungsset für vertikale
Anwendungen

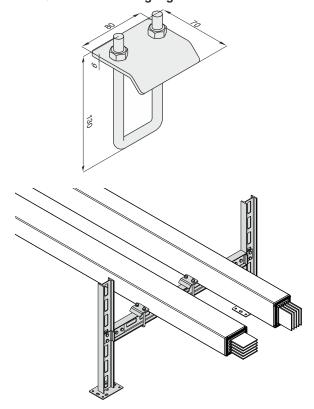
	CRA - Mit Al-Leiter CRC - Mit Cu-Leiter			Leiter	L	Α	Bestellcode
Nennstrom	Nennstrom Busbar Code		Busbar Code	Querschnitt	(mm)	(mm)	
630	06	800	08	6x40	300	90	3108713
800	08	1000	10	6x55	300	105	3108713
1000	10	1250	12	6x80	300	130	3108713
1250	12	1600	16	6x110	350	160	3108714
1600	16	2000	20	6x160	400	210	3108715
2000	20	2500	25	6x200	ix200 400 250		3108715
2500	25	-		6x250	450	300	3108716
2250	23	3000	30	2(6x110)	110) 500		3108717
-	-	3200	32	2(6x125)	500	340	3108717
-	-	3600	36	2(6x140)	600	370	3108718
3000	30	4000	40	2(6x160)	600	410	3108718
3200	33	-	-	2(6x170)	600	430	3108718
3600	36	5000	50	2(6x200)	700	490	3108719
4000	40	-	-	2(6x250)	800	590	3108720
5000	50	6300	63	3(6x200)	900	730	3108721

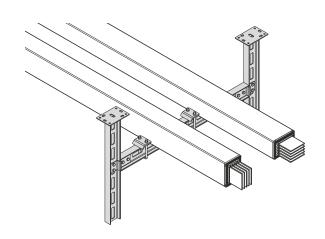

CRA Al-L			CRC - Mit Cu-Leiter		L	Α	Bestellcode
Nennstrom	Busbar Code	Nennstrom	Nennstrom Busbar Code		(mm)	(mm)	
630	06	800	08	6x40	350	90	3108714
800	08	1000	10	6x55	350	105	3108714
1000	10	1250	12	6x80	350	130	3108714
1250	12	1600	1600 16 6x110		350	160	3108714
1600	16	2000	20	6x160	350	210	3108714
2000	20	2500	25	6x200	350	250	3108714
2500	25	-	-	6x250	350	300	3108714
2250	23	3000	30	2(6x110)	350	310	3108714
-	ı	3200	32	2(6x125)	350	340	3108714
-	ı	3600	36	2(6x140)	350	370	3108714
3000	30	4000	40	2(6x160)	350	410	3108714
3200	33	-	-	2(6x170)	350	430	3108714
3600	36	5000	50	2(6x200)	350	490	3108714
4000	40	-	-	2(6x250)	350	590	3108714
5000	50	6300	63	3(6x200)	350	730	3108714



[■] Bitte kontaktieren Sie unsere Firma für spezielle Module.

▶ Aufhängerelemente

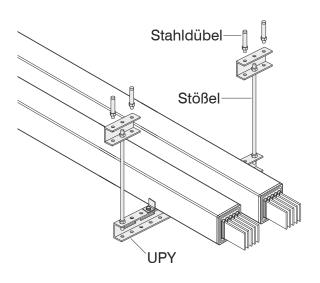


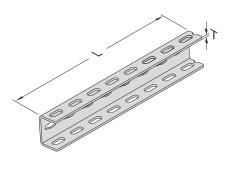

IDD

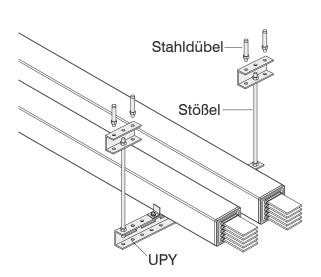
R 1-34 Querbalkenbefestigung

Erklärung	L (mm)	Code
IDY 300	300	3008242
IDY 400	400	3008290
IDY 500	500	3008289
IDY 600	600	3008288
IDY 700	700	3008287
IDY 800	800	3008286
IDY 900	900	3008285
IDY 1000	1000	3008284
IDY 1100	1100	3008283
IDY 1200	1200	3008282
IDY 1300	1300	3008236
IDY 1400	1400	3008281
IDY 1500	1500	3008280
IDY 1600	1600	3008241
IDY 1700	1700	3008240
IDY 1800	1800	3008239
IDY 1900	1900	3008238
IDY 2000	2000	3008237
IDD 300	300	3008314
IDD 400	400	3008313
IDD 500	500	3008312
IDD 600	600	3008311
IDD 700	700	3008310
IDD 800	800	3008309
IDD 900	900	3008308
IDD 1000	1000	3008307
IDD 1100	1100	3008306
IDD 1200	1200	3008305
IDD 1300	1300	3008304
IDD 1400	1400	3008303
IDD 1500	1500	3008302
IDD 1600	1600	3008301
IDD 1700	1700	3008300
IDD 1800	1800	3008299
IDD 1900	1900	3008298
IDD 2000	2000	3008297
177.0		
IDT-Aufhänger	-	3008279

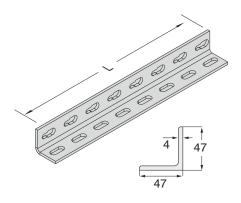
Erklärung	T (mm)	Einheitliches Gewicht (kg./ad.)	Bestellcode
BR 1-34 Querbalkenbefestigung (41x82mm)	6	0,563	3000213

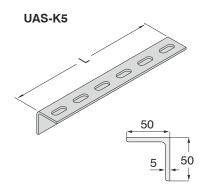

[■] Bitte kontaktieren Sie unsere Firma für besondere Abmessungen.

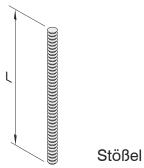

▶ Aufhängerelemente


Träger

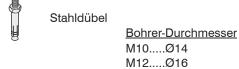
UPY






Erklärung	T (mm)	L (mm)	Code
UPY 300	4	300	3004487
UPY 400	4	400	3004489
UPY 500	4	500	3004491
UPY 600	4	600	3004493
UPY 700	4	700	3004495
UPY 800	4	800	3004496
UPY 900	4	900	3004497
UPY 1000	4	1000	3004498
UPY 1100	4	1100	3004499
UPY 1200	4	1200	3004500
UPY 1500	4	1500	3004503

▶ Aufhängerelemente



Stahlmutter

Scheibe

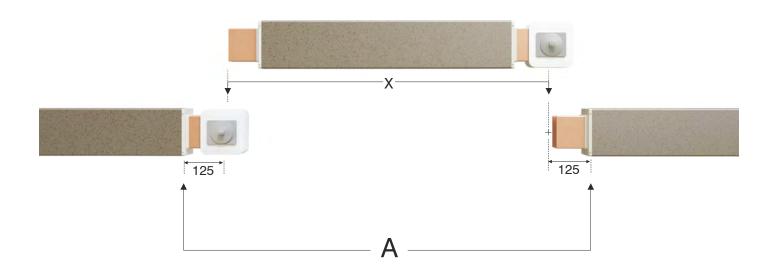
Träger

Erklärung	L (mm)	Code
UAS-K5 AUFHÄNGER (1)	200	3005324
UAS-K5 AUFHÄNGER (2)	250	3005323
UAS-K5 AUFHÄNGER (3)	300	3005322
UAS-K5 AUFHÄNGER (4)	350	3005321
UAS-K5 AUFHÄNGER (5)	400	3005320
UAS-K5 AUFHÄNGER (6)	500	3005319
UAS-K5 AUFHÄNGER (7)	600	3005318
UAS-K5 AUFHÄNGER (8)	700	3005317
UAS-K5 AUFHÄNGER (9)	1100	3005316

Verbindungselemente

Erklärung	L (mm)	Code
BRA 12-05 Tij-Aufhänger (M10)	500	5000037
BRA 12-10 Tij-Aufhänger (M10)	1000	5000032
BRA 14-05 Tij-Aufhänger (M12)	500	5000026
BRA 14-10 Tij-Aufhänger (M12)	1000	5000034
BRA 13 Verlängerungselement (M10)	-	1004312
BRA 13 Verlängerungselement (M12)	-	1004282
BRA 9 Zieh DÜbel (M10)	-	5000023
BRA 9 Zieh DÜbel (M12)	-	5000022
M10 Stahlmutter	-	1000522
M12 Stahlmutter	-	1000964
M10 Scheibe		1000504
M12 Scheibe	-	1000505

[■] Bitte kontaktieren Sie unsere Firma für besondere Abmessungen.

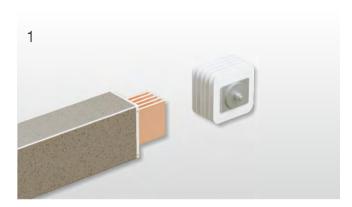

►► Bestimmung von Sonderlängen

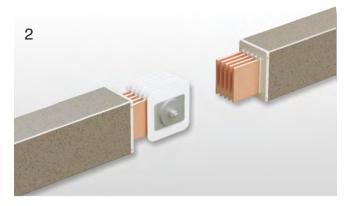
Nach Installation der Standard 3m-Schienenkästen werden Sie zur Vervollständigung des Schienenstranges auch Schienenkästen in Sonderabmessungen benötigen. Die Länge dieser Schienenkästen dürfen dabei jedoch das Mindestmaß von 45 cm nicht unterschreiten. Die Zeichnung zeigt die Messpunkte zur korrekten Bestimmung der nötigen Schienenlänge.

Maß "A" bestimmt sich von Gehäusekante zu Gehäusekante. Zur Maßermittlung der korrekten Länge ist das gemessene Maß um 25 cm zu reduzieren.

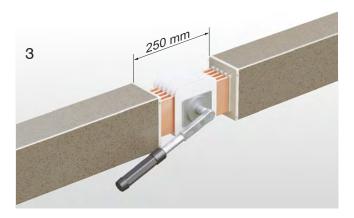
X=A-25 (cm) X=Länge (Der Schienenkasten wird nach der Wahllänge X hergestellt.)

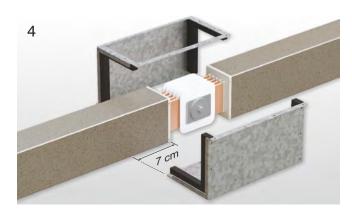
Die Materialmenge in einem Eimer beträgt15 kg..


	CRA - Mit Al-Leiter		- Mit eiter	Leiter	4 Leiter	5 Leiter
Nennstrom	Busbar Code	Nennstrom	Busbar Code	Querschnitt	Kg.	Kg.
630	06	800	08	6x40	15	16
800	08	1000	10	6x55	16	17
1000	10	1250	12	6x80	18	19
1250	12	1600	16	6x110	20	21
1600	16	2000	20	6x160	23	25
2000	20	2500	25	6x200	26	28
2500	25	-	-	6x250	29	31
2250	23	3000	30	2(6x110)	32	34
-	-	3200	32	2(6x125)	34	37
-	-	3600	36	2(6x140)	36	39
3000	30	4000	40	2(6x160)	38	41
3200	33	-	-	2(6x170)	40	43
3600	36	5000	50	2(6x200)	43	47
4000	40	-	-	2(6x250)	53	57
5000	50	6300	63	3(6x200)	60	65


■ Entsprechend der Anzahl der Ergänzungen im Projekt muss das zu verbrauchende Material ermittelt und entsprechend bestellt werden.

►► Horizontale Montage-Anwendung für Gießharz

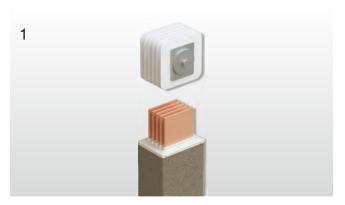


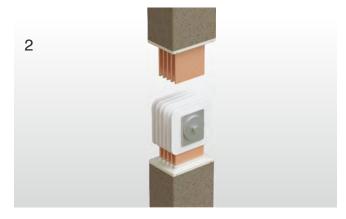

Die freiliegenden Endabschnitte der Busbars, mit einem sauberen Tuch reinigen. Nachdem der Reinigungsvorgang abgeschlossen ist, wird der zusätzliche Kanal nivelliert und auf den festen Kanal festgelegt. Die zusätzliche Mutter wird leicht angezogen und verhindert, dass der Ansatz nicht herunterfällt.

Der zweite Kanal wird gemäß dem Ansatz ausgerichtet. Der Ansatz wird gelockert und der zweite Kanal der Busbar befestigt. Das Spiel der Schraube genommen und leicht angezogen.

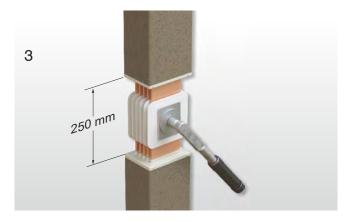

Die kombinierten Kanäle und der Ansatz werden nach Betracht ihrer Ausrichtung abgeschlossen. Mit dem Drehmomentmesser wird auf 83 Nm eingestellt und angezogen.

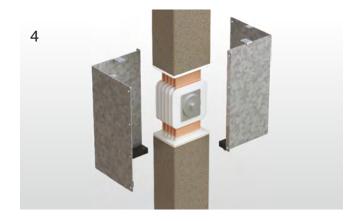
Befestigen Sie die zusätzlichen Formen an den kombinierten Kanälen. Zusätzliche Formen werden mit Schrauben 7 cm vom Ende der Busbar an den Kanälen befestigt.

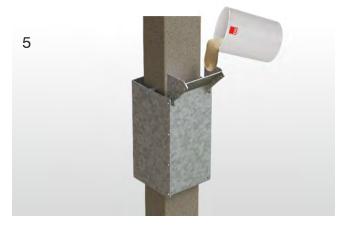

Wie gezeigt, erfolgt der Gießprozess von einem einzigen Punkt aus.


Ausführliche Anweisungen finden Sie im Montagehandbuch.

► Vertikale Montage-Anwendung für Gießharz



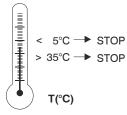

Die freiliegenden Endabschnitte der Busbars, mit einem sauberen Tuch reinigen. Nachdem der Reinigungsvorgang abgeschlossen ist, wird der zusätzliche Kanal nivelliert und auf den festen Kanal festgelegt. Die zusätzliche Mutter wird leicht angezogen und verhindert, dass der Ansatz nicht herunterfällt.


Der zweite Kanal wird gemäß dem Ansatz ausgerichtet. Der Ansatz wird gelockert und der zweite Kanal der Busbar befestigt. Das Spiel der Schraube genommen und leicht angezogen.

Die kombinierten Kanäle und der Ansatz werden nach Betracht ihrer Ausrichtung abgeschlossen. Mit dem Drehmomentmesser wird auf 83 Nm eingestellt und angezogen.

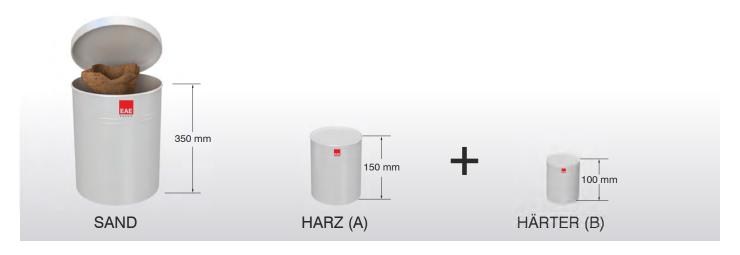
Befestigen Sie die zusätzlichen Formen an den kombinierten Kanälen. Zusätzliche Formen werden mit Schrauben 7 cm vom Ende der Busbar an den Kanälen befestigt.

Beachten Sie, dass sich die Dichtungen für vertikalen Linien unten befinden. Denn, der obere Teil muss leer sein, da das Material von oben eingegossen wird.

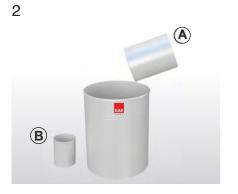

Ausführliche Anweisungen finden Sie im Montagehandbuch.

Vorbereitung des zusätzlichen Harzes aus Gießharz

Vor dem Guss muss ein Meger-Test durchgeführt werden.


voi bereiturig des zusatzilchen Harzes aus Glebrian

Harz (A), Härter (B) und Sand; Bei Lagerung in kalter Umgebung sollte es einen Tag vor dem Gießen in einer warmen Umgebung aufbewahrt werden (> 20°C). Die Umgebungstemperatur während des Gießens muss zwischen 5°C <T Guss <40°C liegen



Gießharzproduktvorbereitung

Der eingesackte Sand in der Plastikbox sollte aus der Box entnommen werden.

Das Harz (A) und der Härter (B) werden nacheinander in die leere Kunststoffbox gegossen.

3

(B)

Nachdem Harz und Härter in die Box gegossen wurde; Die Mischung wird mindestens 1 Minute lang gerührt, bis die Farbe der Mischung homogen ist.

Der Sand wird **langsam** in die Kunststoffbox gegeben und gleichzeitig mit einem Rührer vermischt. Wenn nach 5 Minuten Mischen, die Mischung eine homogene Konsistenz erreicht, sollte **innerhalb von 15 Minuten gegossen werden.**

►► Anwendung von zusätzlichem Harz in horizontaler und vertikaler Montage

Horizontale Anwendung

Nachdem alle Einstellungen vorgenommen wurden, wird das kombinierte Busbar-System mit dem Meger-Test und dem elektrischen Dia-Test auf Leckage getestet und das in Eimern vorbereiteten Material wird an die Nahtstellen gegossen. Das Material muss ohne eine Lücke übrig bleibt, gegossen werden. Nach dem Gießvorgang schlagen Sie mit kleinen Hammerstößen auf die Deckel. So wird Material wird fest platziert.

Vertikale Anwendung

Hinweis: Bei vertikalen Anwendungen sollte mehr auf Ausrichtungen geachtet werden. Andernfalls können im oberen Teil Lücken vorhanden sein, die den Aufsatz gefährden könnten.

CE-KONFORMITÄTSERKLÄRUNG

E-Line CR Schienenverteiler **Produktgruppe**

Hersteller EAE Elektrik Asansor End. Insaat San. ve Tic. A.S.

> Akcaburgaz Mahallesi, 3114. Sokak, No:10 34522 Esenyurt-Istanbul

Die nachfolgend beschriebene Erklärung entspricht den europäischen Richtlinien. Diese Konformitätserklärung wird unter der Verantwortung des Herstellers abgegeben.

Standard:

TS EN 61439-6

Niederspannungsschalt- und Steuereinrichtungen - Abschnitt 6: Geräte zur Energieverteilung in öffentlichen Netzen

CE-Richtlinie

2014/35/EU "Niederspannungsrichtlinie"

2014/30/EU "(EMV) Richtlinie über elektromagnetische Verträglichkeit"

2011/65/EU "RoHS-Richtlinie"

Autorisierter Vorbereiter technischer Dokumente:

EAE Elektrik Asansör End. İnşaat San. ve Tic. A.Ş. Akçaburgaz Mahallesi, 3114. Sokak, No:10 34522 Esenyurt-İstanbul

Emre GÜRLEYEN

Datum

20.04.2016

Autorisierter Unterzeichner für Dokumente

Elif Gamze KAYA OK Stellvertreter des Generaldirektors

►► Produkt Spezifikation

ALLGEMEINE PRODUKTEIGENSCHAFTEN VOM BUSBAR-KANALSYSTEM ZWISCHEN 630A...6300A (E-LINE CR)

1- Standards & Zertifizierung:

- Busbar-Systeme müssen gemäß der internationalen Norm IEC 61439-6 ausgelegt sein, Typprüfungen sind durchzuführen und gemäß der Norm herzustellen. Typprüfungen werden von unabhängigen und international anerkannten akkreditierten Prüf- und Zertifizierungsstellen durchgeführt. Für jede Stromstufe des Busbar-Systems sollten Kurzschlusstests und drei grundlegende Typprüfungen durchgeführt werden.

2- Allgemeine Struktur des Systems

Das Busbar-System muss gemäß den folgenden Spezifikationen über eine niedrige Impedanz verfügen. Zinnbeschichtete Leiter sollten so in das Material eingesetzt werden, dass sich im Inneren des Materials kein Luftspalt befindet.

2.1- Elektrische Werte

- Die nominale Isolationsspannung des Busbar-Kanalsystems muss 1000 V betragen.
- Die Mindestkurzschlusswerte der Busbar-Kanäle müssen wie folgt sein:

Für Al-Leiter; Für Cu-Leiter;

630A: 1 s Wert 20kA, Spitzenwert 40kA	800A: 1 s Wert 23kA, Spitzenwert 48,3kA
800A: 1 s Wert 28kA, Spitzenwert 58,8kA	1000A: 1 s Wert 32kA, Spitzenwert 67,2kA
1000A: 1 s Wert 40kA, Spitzenwert 84kA	1250A: 1 s Wert 45kA, Spitzenwert 94,5kA
1250A: 1 s Wert 55kA, Spitzenwert 121kA	1600A: 1 s Wert 60kA, Spitzenwert 132kA
1600-2000-2500A: 1 s Wert 70kA, Spitzenwert 154kA	2000-2500A: 1 s Wert 80kA, Spitzenwert 176kA
2250-2500A: 1 s Wert 100kA, Spitzenwert 220kA	3000A ve üstü : 1 s Wert 120kA, Spitzenwert 264kA
3000A ve üstü: 1 s Wert 120kA, Spitzenwert 264kA	

2.2- Körper und allgemeine Struktur

- Der Körper der Busbar-Kanäle sollte aus speziell entwickeltem Gussmaterial hergestellt werden.
- Die Struktur der Busbar-Kanäle sollte in regelmäßigen Abständen auf der gesamten Oberfläche der mit Zinn bedeckten Leiter platziert werden.
- Die Mehrwege-Busbars müssen in einem Gehäuse zusammengefasst sein, ohne dass sie sich voneinander trennen.
- Im Busbar-Kanalsystem sollten standardmäßig Drehelemente nach unten-oben, rechts-links, "T"- und Offset-Elemente, Panel-, Transformatorund Kabelverbinder sowie Abschluss-, horizontale und vertikale Erweiterungselemente vorgesehen werden. Spezielle Modul- und Busbar-Kanäle in Zwischenlängen, die während der Projektdurchführung erforderlich sein können, sollten in kurzer Zeit gemäß den Standardspezifikationen und techniken hergestellt werden.
- Wenn die Busbar-Leitungen den Gebäudeausdehnungspunkt passieren, muss das horizontale Ausdehnungselement an der Übergangsstelle verwendet werden. Zusätzlich sollte ein horizontales Dilatationselement in horizontalen Linien von 40 m verwendet werden.

2.3- Leiter und Phasenkonfiguration

- Zwischen dem Busbar-Kanalsystem 630-5000A muss ein Aluminiumleiter vorhanden sein.
- Zwischen dem Busbar-Kanalsystem 800-6300A muss ein Kupferleiter vorhanden sein.

Das Busbar-Kanalsystem muss die folgende Leiteranzahl und Phasenkonfiguration haben.

- a) Mit 3-Leitern
- b) Mit 4-Leitern
- c) Mit 4 1/2-Leitern
- d) Mit 5-Leitern
- e) Mit 6-Leitern
- Der Neutralleiter muss im gleichen Querschnitt wie die Phasenleiter sein.
- Aluminiumleiter müssen in der EG-Klasse sein. Der Mindestleitwert sollte 34 m/mm² betragen. Alle Oberflächen von Aluminiumleitern sollten mit Zinn beschichtet sein.
- Kupferleiter sollten zu 99,95% aus elektrolytischem Kupfer bestehen. Der Mindestleitwert sollte 56 m/mm² betragen. Alle Oberflächen von elektrolytischen Kupferleitern müssen mit Zinn bedeckt sein.

2.4- Isolationsstruktur

- Busbars mit hoher Leitfähigkeit; Speziell ausgewählter Sand sollte mit einem speziellen Verbundmaterial isoliert werden, das aus einer Mischung aus Calcit und Epoxidharz besteht. Dieses Material muss für Temperaturänderungen und Wärmeausdehnungen geeignet sein. Ein hoher Schutz gegen äußere Einwirkungen sollte gegeben sein.

2.5- Modulare Anbindungsstruktur

- Busbar-Kanäle mit zusätzlicher modularer Blockbefestigung mit Punktschubladen und Busbar-Leiter müssen an die Leiterbuchsen in der Blockbefestigung angeschlossen werden. Blockansatz-Isolatoren sollten hochfeste CTP-Isolatoren sein. Die mittlere Befestigungsschraube des Ansatzspunkts muss nach der Montage mit einem Drehmomentschlüssel nit 83 Nm (60 lbft) festgezogen werden.

2.6- Schutzklasse

- Busbar-Kanäle müssen die Schutklasse IP68 haben.

3- Montage- und Inbetriebnahmeprüfungen

- Die Installation des Busbar-Kanlsystems muss gemäß den in diesen Plänen angegebenen Typ- und Stromwerten gemäß dem elektrischen Projekt, den elektrischen Einzelleitungsdiagrammen, dem Grundrissplan und den detaillierten Busbar Anwendungsprojekten erfolgen. Die mittleren Zusatzschrauben müssen mit einem Drehmomentschlüssel auf den entsprechenden Wert festgezogen werden, und die Mutterseite der Schraube muss mit der Mutternverschlusskappe gesichert werden.
- Nach Abschluss der Installation des Busbar-Systems, seiner Übereinstimmung mit den Projekt- und Montageanweisungen sollte das Isolationsprüfgerät auf Isolation geprüft und ein Inbetriebnahmeprüfbericht erstellt werden. Die Isolationswerte zwischen allen Leitern und dem Gehäuse müssen über 1 Megaohm liegen.

Bitte kopieren Sie sich diese Vorlage für den mehrfachen Gebrauch.

	ge					
	Menge					
4	2 _					
Bariteilliste	Sunu					
ag ag	Benennung					
						Datum : Unterschrift :
		••	3	Z	Name	Datum Untersc
	S.	Firma	Projekt	Projekt-ivi		
	Pos.	造	<u> </u>	Ē	nov 1	Geplar
X						
X						
X						. A

PRODUKT GRUPPEN

Für die aktuellste Version unserer Kataloge besuchen Sie bitte unsere Webseite.

www.eae.com.tr/DE

SCHIENENVERTEILER

KABELKANAL

TROLLEY-SAMMELSCHIENEN

INNENINSTALLATIONSLÖSUNGEN

AUFHÄNGESYSTEME

EAE Elektrik A.S. Akcaburgaz Mahallesi, 3114. Sokak, No:10 34522 Esenyurt - Istanbul Tel: +90 (212) 866 20 00

Fax: +90 (212) 886 24 20

Für die aktuellste Version unserer Kataloge besuchen Sie bitte unsere Webseite. www.eae.com.tr/DE

